Off-grid PV

Palau Workshop 8th-12th April

TITIX

North Pacific ACP Renewable Energy and Energy Efficiency Project

PALAU PUBLIC UTILITIES CORPORATION

Introduction

- Maintenance:
 - We will cover basic requirements for each product.
 - Always follow manufacturers recommendations

• Fault Finding: We will look at simple faults

Maintenance Schedule and Log Books

- Documentation supplied to the customer
 - booklet which contains maintenance log sheets for each of the equipment supplied

Maintenance Solar Arrays and Modules

- Clean modules (regularly as required)
- Check array structure for loose mounting connections (when on site)
- Check inter-module cables and other cables for mechanical damage (when on site)
- Check total array output voltage and current and compare to what would be expected under the existing conditions. (when on site)

Maintenance Solar Arrays and Modules: Log Book

Date	Cleaned Modules	Checked Array Structure	Checked Array Cabling Mechanical	Checked Array Cabling Electrical	Output Voltage	Output Current	Regulator Check	Comments

Fault Finding Solar Modules and Arrays

- 1. Modules are now shaded for some reason eg trees grown
- 2. Modules or parts of them are covered in dirt, bird dropping etc or are damaged
- There is a loose connection in the wiring system or a hot joint has occurred and the cable has failed

Maintenance Regulators

- Keep the unit clean and minimise dust. Clean when required
- Ensure the unit is not "invaded" by insects and spiders.
- Ensure all electrical connections are kept clean and tight

Fault Finding Regulators

- Many of today's regulators microprocessor controlled
 - can require extensive programming on commissioning
- Installer or maintainer of systems MUST be familiar with the regulator

Maintenance Batteries (regularly)

- Read & record the specific gravity (wet cell batteries) (Note some manufacturers require this monthly for warranty)
- Check battery inter-cell connections and cable terminations for looseness and corrosion.

Maintenance Batteries (regularly)

- Check for damage of battery cases.
- Check electrolyte level
- Check and record cell voltage level

Maintenance Batteries: Log Book

DATE			
Battery Voltage			
Cell 1	<mark>SG</mark>		
	Volts		
	Temperature		
Cell 2	<mark>SG</mark>		
	Volts		
	Temperature		
Cell 3	SG		
	Volts		
	Temperature		
Cell 4	<mark>SG</mark>		
	Volts		
	Temperature		
Cell X	<mark>SG</mark>		
	Volts		
	Temperature		
Interconnections OK?			
Battery Cases OK?			
Comments			

Maintenance Inverter

- Keep the unit clean and minimise dust. Clean when required
- Ensure the unit is not "invaded" by insects and spiders.
- Ensure all electrical connections are kept clean and tight

Fault Finding Inverter

- Commonly used inverters microprocessor controlled
- If the inverter is not providing an AC voltage it has failed.
- Possible faults
 - Simple loose connection
 - Circuit breaker failure
 - Faulty power board or boards

Maintaining System Integrity

- For the individual components to work as a system they have been interconnected by both power cables and control cables.
- Essential to undertake a visual check on the whole system to ensure no potential threat to the performance and/or safe operation of the system.

Troubleshooting the Whole System

- General complaint:
 - I don't have any power!
- Possible reasons:
 - Failure of any one (or more) particular item
 - Failure of the interconnection wiring between the system components
 - The customer using more power than the system was originally designed for

Remember....

- Completing the installation and commissioning is only a small part
- The real challenge starts after that:

– Keeping the system going for the next 20+ years!

Keep Batteries Clean!

- Batteries are expensive
- Terminal corrosion
- Short circuit
- Short life time

Electrolyte checking and topping up

Important!

- Have Maintenance Schedule
- Keep a Log Book
- Keep the system Clean

- High Maintenance Components:
 - Batteries
 - Generators
 - Pumps

Troubleshouting

- Practical kits and Experience
- Knowledge of Components' operation
- Understanding of the whole system
- Common sense, logic and intuition

Monitoring & Datalogging

