

German Renewable Energy Policy

What can be learned from the German case?

driver – mistakes – challenges

André Poschmann, M.E.S. Federal Ministry of the Environment, Nature Conservation and Nuclear Safety

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)
- RES dynamics in Germany
- •What about the support costs?
- •What can we learn from the German support payments?
- Is a Feed-In as such too expensive?
- •One solution option: the German PV example and the flexible cap
- Future challenges when achieving higher amounts of RES-E

für Umwelt, N und Reaktors

➢Clear investment signals

➢ Reliability

≻Avoiding lock-in-effects

 \succ The higher the envisaged RES level the more important become long term targets

The German *Energiewende* Targets

 \succ Energiewende sets for the first time clear Roadmap with targets up to 2050

	Climate	Renewable energies		Efficiency			
	Greenhouse gases (vs. 1990)	RES-E share	Overall share	Primary energy cons.	Energy produc- tivity	Building moderni- zation	
2020	- 40%	35%	18%	- 20%		Double 1% → 2%	
2030	- 55%	50%	30%		Increase		
2040	- 70%	65%	45%		to 2.1%/a		
2050	- 80-95%	80%	60%	- 50%			

The importance of targets

The main driver for RES-E: the Renewable Source Act (EEG)

- RES dynamics in Germany
- •What about the support costs?
- •What can we learn from the German support payments?
- Is a Feed-In as such too expensive?
- •One solution option: the German PV example and the flexible cap
- Future challenges when achieving higher amounts of RES-E

The Renewable Source Act (EEG) and it main cornerstones

Low investment risk – low interest rates – high attractiveness

- financing costsFixed price ("tariff") for every kWh produced
- for 20 years
- Guaranteed grid access for RES-E
- priority transmission and distribution
- Low administrative burden (e.g. no permission needed for PV roof top)

Effectiveness AND efficiency via technology specific support

developing many future technologies but avoiding over subsidisation

► Reliability: levy financed not public financed

Costs are distributed via TSOs to all consumers on their energy bill

Flexibility: Regular monitoring & adjustments to technology development

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)

RES dynamics in Germany

- •What about support the costs?
- •What can we learn from the German support payments?
- Is a Feed-In as such too expensive?
- •One solution option: the German PV example and the flexible cap
- Future challenges when achieving higher amounts of RES-E

Dynamic growth in RES-E share in electricity consumption

Bundesministerium

Saved costs for climate protection:

- 40€ 140€ avoided external costs /t CO2
- 5.2 13 billion € of saved external costs in 2011

Saved costs for energy imports

Already in 2011

at a RES-E share of appr. 20%

And reduced electricity consumption by 6% cp to 2008

Germany saves 25 bn. €/a of energy imports !

Source: European Commission DG TREN, PRIMES

Already in 2011: 380.000 jobs from RES

Inducing broad investments

- allover the country
- particularly also in less developed areas (eg. east

Germany or at the costs)

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)
- RES dynamics in Germany

What about the support costs?

- •What can we learn from the German support payments?
- Is a Feed-In as such too expensive?
- •One solution option: the German PV example and the flexible cap
- •Future challenges when achieving higher amounts of RES-E

The truth: Germany has paid a lot for RES technology progress

Bundesministerium

➢Cost came down, particularly in PV

>A 4 person houshold (3.500 kWh/a) pays only 15 € per month

► Industry profits

- From lower wholesale power market prices → came down by 2ct/kWh since 2008
- And energy intensive industry is largely exempted from paying the levy

➢ Paradoxon: RES-E reduces the wholesale power market price but thereby increases overall support costs (=support payments minus market price for RES-E)

Why? → the *merit order effect* of wholesale power markets

Wholesale power market: *Merit order* curve <u>with</u> RES-E

average support payments 150 €/MWh - 60 €/MWh wholesale price - support costs are 00 €/MWh

Wholesale power market: *Merit order* curve without Bundesministerium für Umwelt, Naturschutz RES-E

average support payments 150 €/MWh – 90 €/MWh wholesale price → support costs would be 60 €/MWh

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)
- RES dynamics in Germany
- •What about the support costs?

•What can we learn from the German support payments?

- Is a Feed-In as such too expensive?
- •One solution option: the German PV example and the flexible cap
- •Future challenges when achieving higher amounts of RES-E

What can we learn from the German support payments?

First of all: Germany and others financed technology development

- Costs have come down enormously!
- e.g. PV costs came down by more than a half

from 4.000 \in /kWp to 1.500 \in /kWp or from over 40 ct/kWh to 17-20 ct. kWh today!

PV costs came down more than 50% since 2006

Bundesministerium für Umwelt, Naturschutz

Another slide showing PV cost development

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)
- RES dynamics in Germany
- •What about the support costs?
- •What can we learn from the German support payments?

Is a Feed-In as such too expensive?

- •One solution option: the German PV example and the flexible cap
- •Future challenges when achieving higher amounts of RES-E

Feed-in are most effective schemes

Policy Effectiveness Indicator for onshore wind power plants in the period 2004 – 2010 (source: ^{Seite 2}Re-shaping)

Feed-in pay the least support level due to *

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

- low interest rates due to low risk
- low oversubsidiation due to technology specific

What made Germany pay so much then?

 \succ Feed-in become expensive if they want to develop also less mature technologies such as PV

But PV-cost already came down rapidly

 \succ Furthermore: Germany made mistakes which can be avoided when designing a new support scheme today

- Set up clear annual degression right from the beginning to incentives R&D and technology progress
- Install an **autopilot** when growth becomes too soon too fast, (cap)
- Keep tariff adjustment away from long parliamentary processes
- One good solution to meet these 3 points: the German flexible cap

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)
- RES dynamics in Germany
- •What about the support costs?
- •What can we learn from the German support payments?
- Is a Feed-In as such too expensive?

•One solution option: the German PV example and the flexible cap

Future challenges when achieving higher amounts of RES-E

PV in Germany: sudden worldwide boost in technology progress overrun Germany's Feed-in

Bundesministerium

Cut in Tariffs As of 1.4. 2012: new PV tariffs between 13 and 19 €ct/kWh

start of		Installed Ca	Free-Field- Installations			
operation	up to 30 kW	up to 100 kW	up to 1.000 kW	above 1.000 kW	conversion areas	others
as of 1.4.2012	s of 1.4.2012 19,50 (<10kW)		16,50	13,50 (up to 10MW)	13,50	
New! Market	tariffs paid	for x% of annua	I production			
integration model	100% (<10kW)	90% (>1	0kW)	not applicable	not applicable	

The German Flexible Cap

- The importance of targets
- The main driver for RES-E: the Renewable Source Act (EEG)
- RES dynamics in Germany
- •What about support the costs?
- •What can we learn from the German support payments?
- Is a Feed-In as such too expensive?
- •One solution option: the German PV example and the flexible cap
- Future challenges when achieving higher amounts of RES-E

Challenge: RES-E generation does not match demand

Tatsächliche Produktion (Strom)

Geplante Produktion (Strom)

Challenges for higher RES-shares

•Market integration of RES = making RES responsive to market signals

Need for reliable but also reasonable RES pathways

- Need for a constant push
- System need time to adapt, also public acceptance should not be overburdened
- "too soon, too fast" increases the risk of stopp and go

Enhancing flexibility of the electricity system

Need of making RES responsive to market signals

•weakness of the Feed-in system when having achieved high shares of RES:

- An increasing share of RES-E generation does not react to market price signals
- How to ensure efficiency of the market for plant dispatch?
- Who are the players for new innovative concepts?

One solution: Feed-in Premium

Principle of a Premium

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Sliding premium = premium is claculated on a monthly assumption of the average market price

Integrating RES-E

How does the floating market - premium in Germany work?

Income = Market revenues + support premium

Integrating RES-E

Benefits of a FIP cp to FIT

•Market price signal reaches RES-E generators

- Incentives for RES-E generators to adjust to market prices
- Efficient market integration, incentives improved prognosis and balancing

More player for developing innovative solutions for intelligent pooling ore DSMOpens new markets for RES (balancing), optimised use of all electricity markets

Possible Disadvantages of a FIP cp to FIT

Wind and PV have limited abilities to react to the market signal
Higher risk = higher costs

Benefits of FIP cp to quotas

➔ balanced approach for market integration, reduces investors risk

Flexibility optoions I

- Market integreation of RES
 Making RES-E responsive to market signals (e.g. premium)
- 3. Flexibilise demand and enhance Energy Efficiency

Demand side managementEnergy efficiency is the most affordable option to integrate RES

2. Grid reinforcement

- connecting wind from the north
- •with storage in Austria
- •and industry in the west etc.

für Umwelt, Naturschutz und Reaktorsicherheit

Flexibility optoions II

> To begin with: you need clear investment signals \rightarrow targets

> Feed-in are most effective AND efficient if designed properly, due to

Low risk, low financial costs

 \succ One can start now cheaper now: Technology progress has already be financed to large amounts

> One can learn from other's examples how to limit costs of a Feed-in

- annual degression right from the beginning
- Install an autopilot when growth becomes too soon too fast, (cap)
- Keep tariff adjustment away from long parliamentary processes

 \succ Higher shares of RES require enhancing flexibility of the system and market integration of RES

The Germans plan to generate a quarter of their power from solar energy by 2020. If only we had V access to German 2 Sunshine!

Thank you for your attention!

More Information: www.bmu.de/english www.erneuerbare-energien.de/english