GREEN NORMS FOR RENEWABLE ELECTRICITY

Potential Impacts and the status of Green Norms

 Installation of grid connected RE (excluding large hydro) grew from 3.5 GW in March 2002 to 28 GW in March 2013 – annual growth rate of 23%

- March, 2013, RE (excluding large hydro) constituted 12.5% of installed capacity
- **51.23 billion kWh** of electricity generated in 2011-12 annual requirement of **60 million people**

Grid Connected Renewable Power

POTENTIAL		
Technology	Capacity (GW)	
Wind	100-1,000	
Small Hydro	15	
Solar	Unlimited (30 MW/km ²)	
Biomass/Bagasse/Waste	25 (excluding plantation- based biomass power)	

India's RE Potential

Impacts and Regulations

- Linear fragmentation and impacts on wildlife, forest ecology and water bodies
- Impacts on birds and bats (few studies)
- Noise and shadow flicker: magnitude and impacts depends on many variables such as distance of human settlement, local topography, weather, background sound levels etc.
- Local Impacts aesthetics, tourism, land acquisition etc.

Wind: Environmental Impacts

Time period	Wind power capacity Installed (MW)	Forest area cleared (hectares)
Till March 2006	4351	478
April 2006 to March 2013	14701	3454

- Total 3932 ha diverted for 72 projects
- 88% diverted in Karnataka (57%) and Maharashtra (31%)
- Average diversion: about 0.5 ha/MW
- About 8500 MW or 45% of total wind power installed in forest areas

Wind in forest areas

Hilltops in forest areas cut for windmill installation

Road Construction in forest area

NOTNO

NOLNO

VOLVO

LINEAR FRAGMENTATION: Access roads and transmission lines to and from multiple wind projects lead to forest fragmentation – isolation of species and disruption of the movements of animals. Increase in human-animal conflict

Massive soil erosion and land degradation

Approx. 10 -40 ft land mass removed for road construction on Contours

• No EIA

- Categorized in the "green" category: No permits required for noise, shadow flicker or waste oil disposal
- Guidelines by the MOEF exist as for how to handle forest diversion for wind power, but:
 - Without proper impact assessment these cannot be implemented
 - Special concession half the amount of Net Present Value is added to CAMPA funds
 - Quick clearance average 7.5 months till final clearance; in-principle clearance in many cases in less than a month (the lowest being 10 days)

Wind: Existing Green norms

- Multiple impacts on the local environment and ecology
 - Ecological Aquatic flora and fauna specifically impact on fish
 - Physical Flow of the river, Water quality, sediment carrying capacity, erosion, ground water quality and recharge, climate, soil and geology
 - Humans Interference with drinking and agriculture water availability, solid waste and socioeconomic factors
- Cumulative impact and Ecological Flow

SHP: Environmental Impacts

- Analysis of 138
 SHP projects
- Average diversion:
 1 ha/MW
- 2 months for inprincipal approval;
- 6.5 months for final approval from date of application

Forest diversion

Hydro power projects in the Alaknanda and Bhagirathi river basins

- The impact is cumulative with many other development projects in terms of forest use and linear intrusion from roads and power lines
- Cascade operation of small hydro power stations leads to almost drying up of the natural channel of the stream during low flow periods.

Cumulative Impact

- No EIA; no cumulative impact assessment
- Himachal Pradesh Only state to come up with norms for environmental flow - 15 % of the average of the three leanest months – 3% of the high flow
- Forest Clearances required, but poorly assessed (without EIA)
- Different pollution control boards treat SHPs differently most green, one even red

SHP: Existing Green norms

- 1 MW of Solar Power needs
 2.5-3.0 hectares of land;
 land acquisition is an issue
- Impact on ecology if the land is large and in ecosensitive areas
- Solar Thermal uses water for cooling at about the same rate as a coal thermal power plant.
- Battery Disposal & E-Waste Management

Solar: Environmental Impacts

- No EIA for any size
- No Objection Certificate needed for solar thermal plants
- Solar-cells and modules not covered under the E-Wastes (Management and Handling) Rules of 2011
- For Solar Thermal plants "Approval from state/local authority" for the water needed

Solar: Existing Green norms

- 100 GW of wind power is approximately 50,000 new windturbines, which will require thousands of hectares of forest land and thousands of hectares for roads and linear intrusion
- 11.5 GW of Small Hydro may leave a combined stretch of 2,300 km of rivers dry, or nearly dry (assuming average size of the project to be 10 MW) and will need thousands of hectares of forest land
- India should achieve **500 GW of Solar Power** by the end of 2050.
 - This would require approximately **1.25 million hectares of** land.
 - The total land leased for mining in India is about 0.7 million hectares
- 25 GW of Biomass plant will use 7.5 million hectares of plantation land - forest and non-forest land

RE's Land Impacts

'Bottom-up' study to understand the potential to reduce GHG emissions in five most emissions-intensive industrial sectors and the power sector

- Benchmarking energy and GHG emissions with Best Available Techniques (BAT)
- Researching technology options; round table with industries to understand their future technology deployment pathway, limitations, dis/advantages

Low carbon study

- Two pathways projected till 2030-31
 - Business As Usual (BAU): Changes that industry is making or will make on its own to reduce energy consumption -- high cost of energy is the main driver of change. Promises made by the government in NAPCC included in this scenario; changes due to environmental regulations also included
 - Low Carbon (LC): Policy push required to mainstream emerging, not yet commercialized technologies. In many sectors, it is also a *'leap into the unknown'*.
 Combating climate change is the main driver of change.

Low carbon study

Resource impacts

Land: 2008-09

Additional land required (million hectares) excluding land required for biomass

Additional land required

- Land issues at the center of all protests against development projects in India; protest against solar projects in Rajasthan and wind projects in many parts of India
- Reduce land use (solar rooftops) and allow multiple use (multiple land-use in wind farms)
- Win-win deal with the local community benefit sharing -- land rent, profit sharing, resource rent (rent per unit of power produced) etc.

Land

- Need to take into consideration environmental impacts of RE development
- Little regulations exists presently and whatever exits are either ineffective or inconsequential or poorly implemented
- Green norms are needed. Will help the industry in long run.
- Similarly, RE industry need to view land differently than conventional industry -- huge potential to provide winwin solution

Way ahead

CHANDRA BHUSHAN Deputy Director General Centre for Science & Environment chandra@cseindia.org