

Planning for the Transformation of Power Systems

Asami Miketa and Francisco Gafaro IRENA Innovation and Technology Centre

Bonn University/IRENA lecture series - Renewable Future

26 October, 2017

Power Sector Transformation in the context of Global Energy Transition

» Decarbonization of the energy sector

» Increasing cost competitiveness of solar PV and wind based generation

A global view to 2050 – Energy Transition

To meet 2°C climate target set at COP 21 in Paris 2015

- Energy-emission budget:
 790 Gt CO₂ from
 - 2015 till 2100
- Carbon intensity of energy:

needs to fall by
 85% in 2015-2050

Total energy CO₂ emissions from all sectors (Gt CO₂/yr)

43 countries with RE targets in 2005

In 10 years ... 164 countries

Source: IRENA (2015), Renewable Energy Target Setting

Dropping costs

With PPA results for future plants converging for solar & wind

Source: IRENA renewable cost analysis

The transformation of the power system

Example in Germany Source: 50Hertz

The transformation is happening everywhere regardless of the size

On-going global power sector transformation IRENA

Solar and wind accounted for 50% of total capacity additions in 2015

Around **25% RE power generation** share worldwide; growing by **0.7 percentage points per year**

Transition ahead

Source: REmap 2030

Challenges at different levels

Successful transformation requires:

- Political commitment stable regulatory
 framework
- Planning for coherent energy systems
- ✓ Innovative solutions

Power Sector Transformation at IRENA

Find the optimal pathway

for power sector transformation

Market design, regulation, business models

- Adapting electricity market design to high shares of VRE
- Country regulatory advice
- Power sector innovation landscape report (Q4 2017)

Long term, least cost capacity expansion plan

- Best practices in longterm scenario-based modelling report, *Planning for the renewable future*
- Recommendations were discussed at a Latin American regional workshop

PLANNING FOR THE RENEWARLE FUTURE

3 IREN

Unit commitment and economic dispatch

- Production cost modeling
- Developing flexibility assessment to be applied to 5 REmap countries
- Developing a global storage valuation framework, to assess the value of storage in different markets

Grid studies

- Technical network studies
- A guide for VRE integration studies is upcoming
- Technical assessments for larger systems

Generation expansion planning

- Future energy mix and investment path
- Compliance with long-term energy policy goals
- Political consensus making
- Linked often with non-power sector planning

Department of Energy

Regulatory commission

Specialized agency 13

Long-term Planning in South America

» Regional workshop in August in Buenos Aires, "Exchanging best practices to incorporate variable renewable energy into long-term energy/power sector planning in South America"

» Energy planners from 10 countries with 50 participants

Planning reports from the governments IRENA

* Uruguay does not make the planning document publically avaiable

Purpose of long-term planning Basis for policy making

Colombia: Bases for policy making, establishing signals for investment and capacity expansion needs

Uruguay: To design policies to support technologies to promote and investment needs Brazil: To be used as a basis for formulating public policies

Argentina: To establish a framework of discussion for the design of new policies and for the discussion with actors of the sector.

Planning scopes

Country	Scope	Planning horizon	Update
Argentina	Energy	2025	Annual
Bolivia	Electricity	2025	NA
Brazil	Energy	2050	5 -10 years
Chile	Energy	2046	5 years
Colombia	Electricity	15 years	Annual
Ecuador	Electricity	2025	2 years
Mexico	Electricity	15 years	Annual
Paraguay	Energy / electricity	2040 / 2025	5 / 2 years
Peru	Energy	10 years	2 years
Uruguay	Energy / Electricity	2035 / 2040	Annual

Long-term planning – African context

Summary from "Planning renewable energy strategies: Africa power sector, Achievements and way forward", Abu Dhabi January 2015

Long-term energy planning, if done properly,

- Can help to avoid costly investment mistakes
- Creates consensus among stakeholders
- Reduces uncertainties in policy directions/project selection
- Sends investors signals on types & quantity of investment needs
- Accelerate service delivery

Power sector planning: Focus areas for techno-economic analysis

Generation expansion planning

- Government planning office
- Planning agency
- Utility

Dispatch simulation

- Utility
- Regulators
- TSO

Geo-spatial planning

- Government planning office
- Planning agency
- Utility
- TSO

Technical network studies

- TSO
- Regulator
- Project developer

» Dependent on weather conditions

» Change quickly

- » Limited predictability
- » Site specific quality

» Generators are non-synchronous

VRE characteristics that influence the long-term investment decision

Source: http://www.eirgridgroup.com

Good solar and good wind are not guaranteed when needed Too much generations when not needed

 $O_{iO} \xrightarrow{k_{iO}} \sigma_{iO} \xrightarrow{\gamma_{iO}} \sigma_{i$

lack of correlation with demand

1000

0

More capacity is needed to meet the same demand

2030 scenarios for West Africa

And utilization rates of thermal generators get reduced

Interconnector

Balancing through trade Eg. Denmark

MWh/h GERMANY 6000 5000 4000 3000 2000 1000 0 06:00 00:60 5:00 03:00 06:00 00:60 2:00 8:00 00:00 03:00 2:00 8:00 1:00 5:00 00:60 2:00 21:00 03:00 06:00 00:60 00:00 06:00 5:00 2:00 5:00 8:00 1:00 00:00 8:00 8:00 06:00 06:00 00:1 5:0 00:60 03:00 0:60 5:0 -1000 -2000 2016-09-28 2016-09-29 2016-09-30 2016-09-26 2016-09-27 2016-10-01 OffshoreWindPowerProd OnshoreWindPowerProd SolarPowerProd **LocalPowerProd** PrimaryProd Import Gross demand

Operational constraints (stability)

High instantaneous penetration levels, security & stability of the system must be ensure

→ This may lead to curtailment

- » Synchronized generators (fossil generators, large hydro, CSP) conventionally provide grid stability (support recovering from the disturbance)
- » Having a fewer synchronized generators pose a challenge to a grid stability
- » New engineering solutions are available but not all are economical

Variability – fast changes in generation Stress

Aggregation and geographic diversity

Source: NREL/FS-6A20-63037

... can smooth out variability

Flexibility of a system matters

Flexible thermal generation

Home	News	Blog	Our Work »	Awards	Events »
Home News					

News

The CEM Launches New Advanced Power Plant Flexibility Campaign

Thursday, June 08, 2017

- Higher speed of output change
- Lower minimum generation level
- Shorter start up time

Location specificity

Case study: China wind curtailment 17% on average in 2016 with less than 5% VRE generation

A combination of market design and technical factors causes high levels of curtailment:

- Wind resource in
 NW, demand in East
- » Guaranteed
 operating hours for
 coal plant and fixed
 prices no flexibility
- » Lack of transmission capacity
- Provincial level power system balancing

Overcoming technical and operational bottlenecks

The transformation of the power system

The technical Challenges

How to develop the system to maximize the value of VRE generation as it comes - and still ensure the security of supply?

Preconditions for secure system operation:

- Availability of power to cover demand (adequate generation fleet)
- ✓ Adequate network and associated infrastructure
- Availability of ressources to cover system imbalances in the operational hour
- ✓ System stability

Frequency Control

System operators schedule generation resources to meet demand, however 100% accuracy is not possible

flexibility to rapidly adapt schedules to changing conditions and **regulating reserves** to cover unavoidable deviations are necessary

Voltage control

Injection of active power also affects voltage \rightarrow higher influence in distribution networks (i.e. PV in distribution feeders affect voltage)

- » Voltage at terminals of connection of equipment must be within acceptable limits (i.e. +/- 10% of nominal voltage)
- Voltage control is achieved by production and absorption of reactive power
- » Reactive power sources:
 - » Generators, capacitor banks, underground cables
- » Reactive power sinks:
 - » Generators, reactors, motors, transformers
- » Methods of Voltage control:
 - » Generator AVR
 - » Controllable sources or sinks of reactive power (i.e. capacitor banks, SVC, STATCOM, etc)
 - » Regulating transformers (i.e. tap changing transformers)

The technical Challenges

37

Solutions for the recognised issues are already in place

- Provision of grid services from VRE
- Strong transmission grids.
- Interconnection with neighbour systems.
- Flexible conventional generation.
- Storage/ demand side management.
- Specialised forecasting and operational planning tools
- SmartGrids to SmartEnergy to optimize RES utilization across energy sectors and support price flexibility

• ...

Looking forward for new innovative solutions

Planning the secure operation of the power system

- Power system operation and planning aims to provide a reliable and efficient supply of electricity at any time.
- Operation of the power system is a very complicated and critical task that must be supported by a strong planning process.

Engagement with Member Countries

Cooperation with decision makers, network operators and technical experts at a global level supporting exchange of experiences on grid operation & expansion – Until now focus on small islands but moving towards larger interconnected systems

Dominican Republic (grid study**), Antigua & Barbuda** (grid study), **Barbados** (revision of studies), **CARILEC** (technical workshops), **CUBA** Workshop Planning and Operating the Electricity System

DIgSILENT, TU Darmstadt, TRACTEBEL-ENGIE (Access to simulation Software, technical guides)

Samoa, Cook Islands, Palau (grid studies), Kiribati (support in realisation of study), Fiji, Vanuatu (on-going studies, technical workshops)

Central America, Starting technical study. This initiated a step moving towards bigger systems.

SOURENA

International Renewable Energy Agency

Asami Miketa <u>amiketa@irena.org</u> Francisco Gafaro <u>fgafaro@irena.org</u>

Different interaction with the grid

VS

Conventional power pant

Source: CPES Virginia Tech

- Physical principle, and included interface between the grid and the source of energy is different.
 - Robustness of the system and capability to control frequency and voltage may be affected (stability).
- Minimum grid performance requirements and technical assessment to identify security threads are required.

Inertia

VRE properties and challenges example California

Transmission system adequacy

Rapidly declining costs

